首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   62篇
  国内免费   1篇
  2023年   4篇
  2022年   3篇
  2021年   12篇
  2020年   8篇
  2019年   10篇
  2018年   23篇
  2017年   13篇
  2016年   30篇
  2015年   46篇
  2014年   53篇
  2013年   60篇
  2012年   79篇
  2011年   84篇
  2010年   71篇
  2009年   51篇
  2008年   69篇
  2007年   66篇
  2006年   66篇
  2005年   58篇
  2004年   56篇
  2003年   59篇
  2002年   55篇
  2001年   13篇
  2000年   6篇
  1999年   8篇
  1998年   14篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1972年   2篇
  1971年   2篇
  1962年   1篇
  1959年   1篇
  1957年   2篇
排序方式: 共有1119条查询结果,搜索用时 15 毫秒
101.
The 5' stem-loop of the U4 snRNA and the box C/D motif of the box C/D snoRNAs can both be folded into a similar stem-internal loop-stem structure that binds the 15.5K protein. The homologous proteins NOP56 and NOP58 and 61K (hPrp31) associate with the box C/D snoRNPs and the U4/U6 snRNP, respectively. This raises the intriguing question of how the two homologous RNP complexes specifically assemble onto similar RNAs. Here we investigate the requirements for the specific binding of the individual snoRNP proteins to the U14 box C/D snoRNPs in vitro. This revealed that the binding of 15.5K to the box C/D motif is essential for the association of the remaining snoRNP-associated proteins, namely, NOP56, NOP58, fibrillarin, and the nucleoplasmic proteins TIP48 and TIP49. Stem II of the box C/D motif, in contrast to the U4 5' stem-loop, is highly conserved, and we show that this sequence is responsible for the binding of NOP56, NOP58, fibrillarin, TIP48, and TIP49, but not of 15.5K, to the snoRNA. Indeed, the sequence of stem II was essential for nucleolar localization of U14 snoRNA microinjected into HeLa cells. Thus, the conserved sequence of stem II determines the specific assembly of the box C/D snoRNP.  相似文献   
102.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   
103.
During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.  相似文献   
104.
Both cleavage products of the mCLCA3 protein are secreted soluble proteins   总被引:4,自引:0,他引:4  
Members of the chloride channels, calcium-activated (CLCA) family of proteins and in particular the murine mCLCA3 (alias gob-5) and its human ortholog hCLCA1 have been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. Initial studies have indicated that these proteins evoke a calcium-activated chloride conductance when transfected into human embryonic kidney cells 293 cells. However, it is not yet clear whether the CLCA proteins form chloride channels per se or function as mediators of other, yet unknown chloride channels. Here, we present a systematic biochemical analysis of the posttranslational processing and intracellular trafficking of the mCLCA3 protein. Pulse-chase experiments after metabolic protein labeling of mCLCA3-transfected COS-1 or human embryonic kidney 293 cells revealed cleavage of a primary 110-kDa mCLCA3 translation product in the endoplasmic reticulum into a 75-kDa amino-terminal and a 35-kDa carboxyl-terminal protein that were glycosylated and remained physically associated with each other. Confocal fluorescent analyses identified both cleavage products in vesicles of the secretory pathway. Neither cleavage product was associated with the cell membrane at any time. Instead, both subunits were fully secreted into the extracellular environment as a soluble complex of two glycoproteins. These results suggest that the two mCLCA3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules. Furthermore, our results point toward significant structural differences between mCLCA3 and its human ortholog, hCLCA1, which is thought to be a single, non-integral membrane protein.  相似文献   
105.
Recent developments on the role of tocopherol in the antioxidant network of the chloroplast and, in particular, in the protection of PSII in high light are summarized. The origin and conditions for singlet oxygen production in the reaction centre via P680 triplet formation are discussed, as well as the scavenging of this singlet oxygen by tocopherol. This is probably the obligatory function of tocopherol in the plant in high light acclimation. Furthermore, tocopherol is part of the modulation system of ROS in stress signalling.  相似文献   
106.
A comparison study on folate quantitation was carried out between the recently developed stable isotope dilution assay using liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the frequently used HPLC with fluorimetric detection (LC-FD). By applying LC-MS-MS, spinach, wheat bread, beef, and blood plasma were found to contain 159.2, 19.8, 1.2, and 5.6 microg/100 g total folates, respectively, whereas the respective quantitative data obtained by LC-FD were 95.5, 16.2, 0.7, and 6.8 microg/100 g. In all samples, LC-MS-MS revealed superior selectivity and precision and circumvented the shortcomings of conventional LC techniques, i.e., ambiguous peak assignment as well as high detection limits for 5-formyltetrahydrofolate, 10-formylfolic acid, and folic acid. The affinity chromatography columns used in this study showed excellent cleanup performance and permitted detection limits as low as 0.1, 0.5, 0.1, 0.08, and 0.1 microg/100 g for tetrahydrofolate (H(4)folate), 5-methyl-H(4)folate, 5-formyl-H(4)folate, 10-formylfolate, and pteroylglutamic acid, respectively. Thus, a 10-fold higher sensitivity compared to solid-phase anion-exchange cartridges was achieved. However, affinity chromatography columns revealed a significantly higher affinity toward the natural vitamers than to the racemic isotopomeric standards, which has to be considered when applying the latter in stable isotope dilution assays.  相似文献   
107.
The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, formed complexes with subunits associated and covalently bound. In denaturing SDS-polyacrylamide gel electrophoresis (PAGE) SoxY migrated at 12 and SoxZ at 16kDa. SDS-PAGE of homogeneous SoxYZ without reductant separated dimeric complexes of 25, 29, and 32kDa identified by the N-terminal amino acid sequences as SoxY-Y, SoxY-Z, and SoxZ-Z, and subunit cleavage by reduction suggested their linkage via protein disulfide bonds. SoxYZ was reversibly redox active between -0.25 and 0.2V, as monitored by a combined electrochemical and FTIR spectroscopic approach. The dimanganese SoxB protein (58.611Da) converted the covalently linked heterodimer SoxY-Z to SoxYZ with associated subunits which in turn aggregated to the heterotetramer Sox(YZ)(2). This reaction depended on time and the SoxB concentration, and demonstrated the interaction of these two Sox proteins.  相似文献   
108.
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.  相似文献   
109.
110.
Survivin, a member of the inhibitor of apoptosis protein family, has attracted growing attention due to its expression in various tumors and its potential application in tumor therapy. However, its subcellular localization and function have remained controversial: Recent studies revealed that survivin is localized at the mitotic spindle, binds caspases, and could thus protect cells from apoptosis. The cell cycle-dependent expression of survivin and its antiapoptotic function led to the hypothesis that survivin connects the cell cycle with apoptosis, thus providing a death switch for the termination of defective mitosis. In other studies, survivin was detected at kinetochores, cleavage furrow, and midbody, localizations being characteristic for chromosomal passenger proteins. These proteins are involved in cytokinesis as inferred from the observation that RNA interference and expression of mutant proteins led to cytokinesis defects without an increase in apoptosis. To remedy these discrepancies, we analyzed the localizations of a survivinDsRed fusion protein in HeLa cells by using confocal laser scanning microscopy and time-lapse video imaging. SurvivinDsRed was excluded from the interphase nucleus and was detected in centrosomes and at kinetochores. It dissociated from chromosomes at the anaphase/telophase transition and accumulated at the ends of polar microtubuli where it was immediately condensed to the midbody. Overexpression of both survivinDsRed and of a phosphorylation-defective mutant conferred resistance against apoptosis-inducing reagents, but only the overexpressed mutant protein caused an aberrant cytokinesis. These data characterize in detail the dynamics of survivin in vertebrate cells and confirm that survivin represents a chromosomal passenger protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号